Quantum entanglement

Spontaneous parametric down-conversion process can split photons into type II photon pairs with mutually perpendicular polarization.

Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.[1]: 867

Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives rise to seemingly paradoxical effects: any measurement of a particle's properties results in an apparent and irreversible wave function collapse of that particle and changes the original quantum state. With entangled particles, such measurements affect the entangled system as a whole.

Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky, and Nathan Rosen,[2] and several papers by Erwin Schrödinger shortly thereafter,[3][4] describing what came to be known as the EPR paradox. Einstein and others considered such behavior impossible, as it violated the local realism view of causality (Einstein referring to it as "spooky action at a distance")[5] and argued that the accepted formulation of quantum mechanics must therefore be incomplete.

Later, however, the counterintuitive predictions of quantum mechanics were verified[6][7][8] in tests where polarization or spin of entangled particles were measured at separate locations, statistically violating Bell's inequality. In earlier tests, it could not be ruled out that the result at one point could have been subtly transmitted to the remote point, affecting the outcome at the second location.[8] However, so-called "loophole-free" Bell tests have since been performed where the locations were sufficiently separated that communications at the speed of light would have taken longer—in one case, 10,000 times longer—than the interval between the measurements.[7][6]

Entanglement produces correlation between the measurements, the mutual information between the entangled particles can be exploited, but any transmission of information at faster-than-light speeds is impossible.[9][10] Quantum entanglement cannot be used for faster-than-light communication.[11]

Quantum entanglement has been demonstrated experimentally with photons,[12][13] electrons,[14][15] top quarks,[16] molecules[17] and even small diamonds.[18] The use of entanglement in communication, computation and quantum radar is an active area of research and development.

  1. ^ Cite error: The named reference horodecki2007 was invoked but never defined (see the help page).
  2. ^ Einstein, Albert; Podolsky, Boris; Rosen, Nathan (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?". Phys. Rev. 47 (10): 777–780. Bibcode:1935PhRv...47..777E. doi:10.1103/PhysRev.47.777.
  3. ^ Schrödinger, Erwin (1935). "Discussion of probability relations between separated systems". Mathematical Proceedings of the Cambridge Philosophical Society. 31 (4): 555–563. Bibcode:1935PCPS...31..555S. doi:10.1017/S0305004100013554. S2CID 121278681.
  4. ^ Schrödinger, Erwin (1936). "Probability relations between separated systems". Mathematical Proceedings of the Cambridge Philosophical Society. 32 (3): 446–452. Bibcode:1936PCPS...32..446S. doi:10.1017/S0305004100019137. S2CID 122822435.
  5. ^ Physicist John Bell depicts the Einstein camp in this debate in his article entitled "Bertlmann's socks and the nature of reality", p. 143 of Speakable and unspeakable in quantum mechanics: "For EPR that would be an unthinkable 'spooky action at a distance'. To avoid such action at a distance they have to attribute, to the space-time regions in question, real properties in advance of observation, correlated properties, which predetermine the outcomes of these particular observations. Since these real properties, fixed in advance of observation, are not contained in quantum formalism, that formalism for EPR is incomplete. It may be correct, as far as it goes, but the usual quantum formalism cannot be the whole story." And again on p. 144 Bell says: "Einstein had no difficulty accepting that affairs in different places could be correlated. What he could not accept was that an intervention at one place could influence, immediately, affairs at the other." Downloaded 5 July 2011 from Bell, J. S. (1987). Speakable and Unspeakable in Quantum Mechanics (PDF). CERN. ISBN 0521334950. Archived from the original (PDF) on 12 April 2015. Retrieved 14 June 2014.
  6. ^ a b Yin, Juan; Cao, Yuan; Yong, Hai-Lin; Ren, Ji-Gang; et al. (2013). "Bounding the speed of 'spooky action at a distance". Physical Review Letters. 110 (26): 260407. arXiv:1303.0614. Bibcode:2013PhRvL.110z0407Y. doi:10.1103/PhysRevLett.110.260407. PMID 23848853. S2CID 119293698.
  7. ^ a b Matson, John (13 August 2012). "Quantum teleportation achieved over record distances". Nature News. doi:10.1038/nature.2012.11163. S2CID 124852641.
  8. ^ a b Francis, Matthew (30 October 2012). "Quantum entanglement shows that reality can't be local". Ars Technica. Retrieved 22 August 2023.
  9. ^ Penrose, Roger (2004). The road to reality: a complete guide to the laws of the universe. London: Jonathan Cape. p. 603. ISBN 978-0-224-04447-9.
  10. ^ Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN 978-0-13-111892-8..
  11. ^ Siegel, Ethan. "No, We Still Can't Use Quantum Entanglement To Communicate Faster Than Light". Forbes. Retrieved 6 January 2023.
  12. ^ Kocher, C. A.; Commins, E. D. (1967). "Polarization Correlation of Photons Emitted in an Atomic Cascade". Physical Review Letters. 18 (15): 575–577. Bibcode:1967PhRvL..18..575K. doi:10.1103/PhysRevLett.18.575.
  13. ^ Kocher, Carl Alvin (1 May 1967). Polarization Correlation of Photons Emitted in an Atomic Cascade (PhD thesis). University of California.
  14. ^ Hensen, B.; et al. (21 October 2015). "Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres". Nature. 526 (7575): 682–686. arXiv:1508.05949. Bibcode:2015Natur.526..682H. doi:10.1038/nature15759. hdl:2117/79298. PMID 26503041. S2CID 205246446. See also free online access version.
  15. ^ Markoff, Jack (21 October 2015). "Sorry, Einstein. Quantum Study Suggests 'Spooky Action' Is Real". The New York Times. Retrieved 21 October 2015.
  16. ^ "Quantum entanglement observed in top quarks". 11 October 2023.
  17. ^ Holland, Connor M.; Lu, Yukai; Cheuk, Lawrence W. (8 December 2023). "On-demand entanglement of molecules in a reconfigurable optical tweezer array". Science. 382 (6675): 1143–1147. arXiv:2210.06309. Bibcode:2023Sci...382.1143H. doi:10.1126/science.adf4272. ISSN 0036-8075. PMID 38060644.
  18. ^ Lee, K. C.; Sprague, M. R.; Sussman, B. J.; Nunn, J.; et al. (2 December 2011). "Entangling macroscopic diamonds at room temperature". Science. 334 (6060): 1253–1256. Bibcode:2011Sci...334.1253L. doi:10.1126/science.1211914. PMID 22144620. S2CID 206536690.

Developed by StudentB